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Abstract

Guided elastic-wave-inspection technique for hollow cylinders has received plenty of attention in recent years because of its high effi-
ciency and low cost. To apply guided elastic waves to defects detection, it is necessary to investigate the propagation of guided waves in
the hollow cylinders under all kinds of boundary conditions. In this paper, the dispersion equations of torsional, longitudinal and flexural
guided waves in the hollow cylinders with traction-free and clamped lateral boundaries are derived by elastodynamic theory, based on
which the phase and group velocity dispersion curves of the guided waves mentioned above are obtained. And the dispersion properties
of these waves are discussed in detail. The transient wave in a free-clamped hollow cylinder is simulated by the finite element method
(FEM). The time–frequency distribution of the transient wave agrees well with the theoretical group velocity dispersion curves.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

The pioneering work of Silk and Bainton [1] on the use
of guided waves for the inspection of heat exchanger tubing
made people notice the potential value of this technique. It
offers the possibility of rapid nondestructive evaluation of
long lengths of pipework for corrosion and cracks. It is
necessary to investigate the propagation of guided waves
in the hollow cylinders under all kinds of boundary condi-
tions in order to employ them to detect the defects men-
tioned above. The propagation of guided waves in the
infinite hollow cylinders with traction-free lateral bound-
aries has been studied intensively by Gazis [2]. According
to his studies, various guided wave modes propagating axi-
ally in the hollow cylinders can be categorized as torsional
waves T(0, m), longitudinal waves L(0, m) and flexural

waves F(n,m) (n, m = 1,2,3, . . .). There are also guided
waves propagating circumferentially. The excitation of
transient guided waves in the infinite hollow cylinders has
been investigated by Ditri and Rose [3], Pan et al. [4],
and Tang and Cheng [5]. Han et al. [6] studied the transient
waves in a cylinder made of functionally graded material
by a hybrid numerical method. As to the free vibrations
of the finite length hollow cylinders with traction-free lat-
eral boundaries, Hutchinson and EI-Azhari [7], and
Mofakhami et al. [8] presented a semi-analytical method,
in which some of the boundary conditions need to be
approximately satisfied using the orthogonalization tech-
nique while the others need to be exact. Aristegui et al.
[9], Na and Kundu [10], and Pan et al. [11] investigated
the propagation of guided waves in fluid-filled tubes.

There are few published papers about the propagation
of guided waves in the hollow cylinders with traction-free
and clamped lateral boundaries, i.e. one lateral boundary
is clamped while the other is traction free. Bird [12]
discussed the plane-strain vibration of these hollow
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cylinders numerically. In this paper, the propagation of
torsional waves, longitudinal waves and flexural waves
in the hollow cylinders with traction-free and clamped
lateral boundaries is investigated theoretically and
numerically. Note that an infinite hollow cylinder is
called free clamped, when its inside surface is free and
its outside surface is clamped; contrarily, it is called
clamped free in the sequel.

2. Dispersion properties of guided waves

The free vibration of an isotropic elastic solid is gov-
erned by Navier’s equation

ðkþ lÞrðr � uÞ þ lr2u ¼ q
@2u

@t2
ð1Þ

where k and l are the Lamé constants of the material, and
u(r, t) is the displacement field vector. According to the
method of Helmholtz resolution [13], we have

u ¼ LþM þN ð2Þ
L ¼ ru; M ¼ r� ðwezÞ; N ¼ lr�r� ðvezÞ ð3Þ

where l is introduced so that these terms are dimensionally
uniform, ez is the unit vector along the axial coordinate
directions. u, w and v in Eq. (3), which are called the Helm-
holtz potentials, satisfy

r2uþ x2

c2
1

u ¼ 0 ð4Þ

r2wþ x2

c2
2

w ¼ 0 ð5Þ

r2vþ x2

c2
2

v ¼ 0 ð6Þ

where c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and c2 ¼

ffiffiffiffiffiffiffiffi
l=q

p
. We can obtain

the following expressions of displacement and stress com-
ponents from Eqs. (2)–(6):

urðr; h; z; tÞ ¼ RrðrÞ cos nh cos nzejðnz�xtÞ ð7Þ
uhðr; h; z; tÞ ¼ RhðrÞ sin nh cos nzejðnz�xtÞ ð8Þ
uzðr; h; z; tÞ ¼ RzðrÞ cos nh sin nzejðnz�xtÞ ð9Þ
rrrðr; h; z; tÞ ¼ srrðrÞ cos nh cos nzejðnz�xtÞ ð10Þ
rrhðr; h; z; tÞ ¼ srhðrÞ sin nh cos nzejðnz�xtÞ ð11Þ
rrzðr; h; z; tÞ ¼ srzðrÞ cos nh sin nzejðnz�xtÞ ð12Þ

where

RrðrÞ
RhðrÞ
RzðrÞ
srrðrÞ
srhðrÞ
srzðrÞ

2
666666664

3
777777775
¼

S11 S12 � � � S16

S21 S22 � � � S26

S31 S32 � � � S36

T 11 T 12 � � � T 16

T 21 T 22 � � � T 26

T 31 T 32 � � � T 36

2
666666664

3
777777775
�

A1

B1

A2

B2

A3

B3

2
666666664

3
777777775

ð13Þ

The expressions of Sij and Tij (i = 1,2,3; j = 1,2, . . . , 6) are
listed in Appendix A.

For a free-clamped hollow cylinder, i.e. the inside
surface of the hollow cylinder is traction free and the out-
side surface of it is clamped, we have

rrrjr¼a ¼ 0; rrhjr¼a ¼ 0; rrzjr¼a ¼ 0 ð14Þ
urjr¼b ¼ 0; uhjr¼b ¼ 0; uzjr¼b ¼ 0 ð15Þ

where a and b are the inner and outer radiuses, respectively.
For a clamped-free hollow cylinder, i.e. the inside surface
of the hollow cylinder is clamped and the outside surface
of it is traction free, we have

urjr¼a ¼ 0; uhjr¼a ¼ 0; uzjr¼a ¼ 0 ð16Þ
rrrjr¼b ¼ 0; rrhjr¼b ¼ 0; rrzjr¼b ¼ 0 ð17Þ

Fig. 1 is the schematic diagram of the infinite hollow cylin-
der with free and clamped lateral boundaries.

Substituting Eqs. (7)–(12) in Eqs. (14) and (15) or Eqs.
(16) and (17), we obtain a system of six homogeneous equa-
tions in the constants A1, B1, A2, B2, A3 and B3. A neces-
sary and sufficient condition for the existence of a
solution is that the determinant of coefficients must be
equal to zero, namely,

jCpqj6�6 ¼ 0 ð18Þ

where

Cpq ¼
T pq

��
r¼a

ðp ¼ 1; 2; 3; q ¼ 1; 2; � � � 6Þ
Sðp�3Þq

��
r¼b

ðp ¼ 4; 5; 6; q ¼ 1; 2; � � � 6Þ

(
ð19Þ

for the free-clamped hollow cylinder, and

Cpq ¼
Spq

��
r¼a

ðp ¼ 1; 2; 3; q ¼ 1; 2; � � � 6Þ
T ðp�3Þq

��
r¼b

ðp ¼ 4; 5; 6; q ¼ 1; 2; � � � 6Þ

(
ð20Þ

for the clamped-free hollow cylinder. If n – 0, Eq. (18)
represents the dispersion equation of flexural waves. If
n = 0, we can derive from Eq. (18) that

Fig. 1. Schematic diagram of an infinite hollow cylinder with free and
clamped lateral boundaries.
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C11 C12 0 0 C15 C16

0 0 C23 C24 0 0

C31 C32 0 0 C35 C36

C41 C42 0 0 C45 C46

0 0 C53 C54 0 0

C61 C62 0 0 C65 C66

��������������

��������������

¼ 0 ð21Þ

Eq. (21) yields

C23 C24

C53 C54

����
���� ¼ 0 ð22Þ

and

C11 C12 C15 C16

C31 C32 C35 C36

C41 C42 C45 C46

C61 C62 C65 C66

���������

���������
¼ 0 ð23Þ

Eqs. (22) and (23) are the dispersion equations of torsional
and longitudinal waves, respectively.

Numerical results show that the guided waves in the
clamped-free hollow cylinder almost propagate in the same
manner as those in the free-clamped one. Thus, only the
numerical results for the guided waves propagating in the
free-clamped hollow cylinder are given here. The material
parameters employed in all simulations are density
q = 7.8 g/cm3, Young’s module E = 215.04 GPa, and the
Poisson coefficient c = 0.28.

The dispersion equation of guided waves in the hollow
cylinder can be expressed as

f ðc; nÞ ¼ 0 ð24Þ

where c is the phase velocity, and n is the wave number.
For a fixed value of n, the left part of Eq. (24) is a function
of c alone. Muller and bisection methods can be used to
find the roots of it. Compared with the Muller method,
the bisection method is less efficient but more robust. Here,
we use the latter one. Note that some adjacent phase veloc-
ity dispersion curves of longitudinal or flexural guided
waves are very close in the vicinity of some points. It
may greatly lower the efficiency of root finding, because
the step size Dc must be very small when some roots are
very close to each other. In order to improve the efficiency
of computation, the algorithm of variable step size Dc is
adopted. The roots ci (i = 1,2, . . . ,k) found at the given va-
lue of n are stored, and the intervals Dci (i = 1,2, . . . ,k � 1)
between the roots are computed, where k is the number of
roots we want to compute. When we search for the roots at
n + Dn, the step size Dc changes according to the location
of c and Dci.

Fig. 2 shows the Phase and Group velocity (Cp and Cg)
dispersion curves of the torsional waves T(0,m), longitudi-
nal waves L(0, m) and flexural waves F(1,m) in the free-
clamped hollow cylinder with h/b = 0.1, where
m = 1,2, . . . , 10 and h is the wall thickness. The dispersion
curves corresponding to the guided waves in free-free

hollow cylinders, whose inside and outside surfaces are
traction free, are shown in Fig. 3.

The guided waves in the free-clamped hollow cylinder
have the following properties:

(1) Fig. 2(a) and (b) shows that all the torsional wave
modes in the free-clamped hollow cylinder are disper-
sive. But the mode T(0,1) in the free–free hollow cyl-
inder is nondispersive (as shown in Fig. 3(a) and (b)).

(2) We can find from Fig. 2(d) that the mode L(0,1) in the
free-clamped hollow cylinder has the cut-off frequency.
And Fig. 2(c) shows that the phase velocity of this
mode is greater than c2, when nh < 3.0. But the mode
L(0,1) in the free–free hollow cylinder has no cut-off
frequency, i.e. the energy of it is distributed in the fre-
quency band of ½0;1Þ, which can be known from
Fig. 3(c) and (d), and the phase velocity of it is less than
c2 when nh 3 ð0:2; 3Þ.

(3) By comparing Fig. 2(d) and (e) with Fig. 3(d) and (e), we
can observe that the group velocity dispersion curves of
the guided waves in the free-clamped hollow cylinder are
more complex than those in the free–free one.

(4) The phase velocity of the mode F(1, 1) in the free-
clamped hollow cylinder is greater than c2 when nh

is small enough, as shown in Fig. 2(e). But Fig. 3(e)
shows that the phase velocity of the mode F(1,1) in
the free–free hollow cylinder is always less than c2.

(5) Fig. 2(d) and (f) shows that the modes L(0,2), L(0, 4),
F(1,3) and F(1, 6) in the free-clamped hollow cylinder
contain frequency components with negative group
velocity. Fig. 3(d) and (f) shows that the modes
L(0,4) and F(1,6) contain but L(0,2) and F(1,3) do
not contain frequency components with negative
group velocity for the free–free hollow cylinder. By
comparing Fig. 2(d) and (f) with Fig. 3(d) and (f), we
can find that the maximal absolute value of the nega-
tive group velocity of the mode L(0,4) or F(1, 6) in
the free-clamped hollow cylinder is smaller than that
of the corresponding mode in the free–free one.

(6) By comparing Fig. 2(b), (d) and (f) with Fig. 3(b), (d)
and (f), we know that the cut-off frequency of the
guided wave mode in the free-clamped hollow cylin-
der is different from that of the corresponding mode
in the free–free one.

(7) It seems from Fig. 2(c) and (e) that some adjacent
phase velocity dispersion curves of longitudinal or
flexural guided waves intersect each other, for exam-
ple, those of L(0, 1) and L(0, 2) or F(1, 1) and F(1, 2).
But this is not the truth. Fig. 4(a)–(c) shows the phase
velocity dispersion curves of the guided wave modes
F(1,m) (m = 1,2, . . . , 10) in the free-clamped hollow
cylinders with different h/b. It is easy to observe from
Fig. 4(a) that the adjacent phase velocity dispersion
curves do not intersect each other when h/b is big
enough, but they begin to attract each other at some
points when h/b decreases gradually, as shown in
Fig. 4(b) and (c). And they are so close that they seem
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to intersect each other when h/b is small enough.
Fig. 2(e) shows that the phase velocity dispersion
curves of modes F(1, 1) and F(1,2), F(1,2) and
F(1, 3), and F(1,3) and F(1, 4) attract each other at
points P1, P2 and P3, respectively. Fig. 2(f) shows
that the group velocity dispersion curves correspond-
ing to these points vary sharply.

3. Transient waves and analyses

In this section, we will investigate the propagation of
transient waves in the free-clamped steel hollow cylinder,

the geometrical parameters of which are outer radius
b = 0.04 m and wall thickness h = 0.01 m, by the finite ele-
ment method (FEM). The external force is applied on the
inside surface axisymmetrically along the radial direction,
and it is formulated as

Sðz; tÞ¼A e�0:1eðt�jÞ2 �e�0:1eðt�1:1jÞ2 þ2e�5eðt�jÞ2 �2e�5eðt�1:1jÞ2
h i

er;

z2 ½�L;L�; h2 ½0;2p� ð25Þ

where

e ¼ 1012; j ¼ 10�5; L ¼ 0:5� 10�3m ð26Þ

Fig. 2. The dispersion curves of guided waves in the free-clamped hollow cylinder with h/b = 0.1. (a) Phase velocity dispersion curves of torsional waves
T(0,m); (b) group velocity dispersion curves of torsional waves T(0,m); (c) phase velocity dispersion curves of longitudinal waves L(0,m); (d) group
velocity dispersion curves of longitudinal waves L(0,m); (e) phase velocity dispersion curves of flexural waves F(1,m); (f) group velocity dispersion curves
of flexural waves F(1,m) in the free-clamped hollow cylinder with h/b = 0.1, where m = 1,2, . . . , 10.
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Fig. 5(a) is the normalized waveform of S(a,z, t), and
Fig. 5(b) is the normalized power spectrum density
(PSD) of it. Apparently, only the longitudinal wave
modes can be excited. Simulation indicates that the exci-
tation efficiency of the mode L(0,1) is far higher than
that of the other mode, especially in the neighborhood
of 200 kHz, if the exciting source is an impact signal
whose energy is distributed in a wide frequency range.
Thus, the external force formulated as in Eqs. (25) and
(26) is constructed to adjust the distribution of energy
in different wave modes to make it easy to analyze the
dispersion properties of different modes from the tran-

sient waves excited. We can find from Fig. 5(b) that
the energy of the source is relatively low in the neighbor-
hood of 200 kHz.

Fig. 6 shows the finite element mesh of the hollow cylin-
der. The finite element model can be reduced, because the
hollow cylinder and the surface force applied to it are not
only axis-symmetrical but also symmetric to the plane
z = 0. Four-noded two-dimensional axisymmetric elements
are employed in the FEM simulation. The element size
along the z-axis is 2.5 � 10�4 m. And the hollow cylinder
is radially divided into forty uniform parts. The time-step
is 0.025 ls in the explicit algorithm. And the following

Fig. 3. The dispersion curves of guided waves in the free–free hollow cylinder with h/b = 0.1. (a) Phase velocity dispersion curves of torsional waves
T(0,m); (b) group velocity dispersion curves of torsional waves T(0,m); (c) phase velocity dispersion curves of longitudinal waves L(0,m); (d) group
velocity dispersion curves of longitudinal waves L(0,m); (e) phase velocity dispersion curves of flexural waves F(1,m); (f) group velocity dispersion curves
of flexural waves F(1,m) in the free–free hollow cylinder with h/b = 0.1, where m = 1,2, . . . , 10.
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results are obtained by employing the general purpose
commercial finite element software called Abaqus.

Fig. 7(a)–(c) shows the transient axial displacement uz

simulated by FEM at z = 1.0 m, 1.5 m and 2.0 m, respec-
tively. Clearly, the amplitude of the transient displace-
ment becomes smaller and the waveform expands along

Fig. 4. The phase velocity dispersion curves of the guided wave modes
F(1,m) (m = 1,2, . . . ,10) in the free-clamped hollow cylinders with
different h/b. (a) h/b = 0.8; (b) h/b = 0.4; (c) h/b = 0.2.

Fig. 5. The normalized waveform of S(a,z, t) (a) and the normalized power spectrum density (PSD) of the source S(a,z, t) (b).

Fig. 6. The finite element mesh of the hollow cylinder employed in the
FEM simulation.

Fig. 7. The transient axial displacement uz simulated by FEM. (a)
z = 1.0 m; (b) z = 1.5 m; (c) z = 2.0 m.
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with the propagation of the guided waves because of the
dispersion effect. Fig. 8 shows the time–frequency distri-
bution of the wave in Fig. 7(c). The time–frequency dis-
tribution gives the arrival time of each frequency
component and, therefore, directly shows the relationship
between the group velocity and the frequency. We can
conclude from Fig. 8 that the sharp spikes with high
amplitude in Fig. 7 come from higher frequency of the
mode L(0, 1) propagating at a relatively unvarying group
velocity. The dash line in Fig. 8 is the group velocity dis-
persion curves computed from the dispersion equation,
i.e. Eq. (23). Apparently, they agree very well with the
time–frequency distribution of the transient waveform
simulated by FEM.

4. Conclusions

Generally, a single pure mode needs to be excited, and
then employed to detect the defects in elastic guides in
order to extract useful information from the waves
reflected from the defects easily; otherwise, the waves
caused by the interaction of multimodes and the defects
may be too complex to be analyzed. Studying the disper-
sion properties of the guided waves is the basis of selecting
the approximate mode to inspect the hollow cylinder [14],
which is the motivation of this study. The dispersion prop-
erties of the guided waves in the free-clamped hollow cylin-
der have been discussed theoretically and numerically in
this study. To prove the correctness of the theoretical and
numerical results, the time–frequency distribution of the
transient wave simulated by FEM is obtained and is com-
pared with the theoretical dispersion results. Good agree-
ment is obtained.
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Appendix A

The expressions of Sij and Tij (i = 1,2,3; j = 1,2, . . . ,6)
in Eq. (13) are

S11 ¼ a1Z 0nða1rÞ ðA1Þ
S12 ¼ a1W 0

nða1rÞ ðA2Þ

S13 ¼
n
r

Znðb1rÞ ðA3Þ

S14 ¼
n
r

W nðb1rÞ ðA4Þ

S15 ¼ jnb1lZ 0nðb1rÞ ðA5Þ
S16 ¼ jnb1lW 0

nðb1rÞ ðA6Þ

S21 ¼ �
n
r

Znða1rÞ ðA7Þ

S22 ¼ �
n
r

W nða1rÞ ðA8Þ

S23 ¼ �b1Z 0nðb1rÞ ðA9Þ
S24 ¼ �b1W 0

nðb1rÞ ðA10Þ

S25 ¼ �
jnnl

r
Znðb1rÞ ðA11Þ

S26 ¼ �
jnnl

r
W nðb1rÞ ðA12Þ

S31 ¼ �jnZnða1rÞ ðA13Þ
S32 ¼ �jnW nða1rÞ ðA14Þ
S33 ¼ 0 ðA15Þ
S34 ¼ 0 ðA16Þ

S35 ¼ l
x2

c2
2

� n2

� �
Znðb1rÞ ðA17Þ

S36 ¼ l
x2

c2
2

� n2

� �
W nðb1rÞ ðA18Þ

T 11 ¼ 2la2
1Z 00nða1rÞ � k � x

2

c2
1

� Zða1rÞ ðA19Þ

T 12 ¼ 2la2
1W 00

nða1rÞ � k � x
2

c2
1

� W nða1rÞ ðA20Þ

T 13 ¼ 2l
n
r2
½b1rZ 0nðb1rÞ � Znðb1rÞ� ðA21Þ

T 14 ¼ 2l
n
r2
½b1rW 0

nðb1rÞ � W nðb1rÞ� ðA22Þ

T 15 ¼ 2jlnb2
1lZ 00nðb1rÞ ðA23Þ

T 16 ¼ 2jlnb2
1lZ 00nðb1rÞ ðA24Þ

T 21 ¼ �
2lna1

r
Z 0nða1rÞ þ 2ln

r2
Znða1rÞ ðA25Þ

T 22 ¼ �
2lna1

r
W 0

nða1rÞ þ 2ln
r2

W nða1rÞ ðA26Þ

T 23 ¼
ln2

r2
Znðb1rÞ þ lb1

r
Z 0nðb1rÞ � lb2

1Z 00nðb1rÞ ðA27Þ

T 24 ¼
ln2

r2
W nðb1rÞ þ lb1

r
W 0

nðb1rÞ � lb2
1W 00

nðb1rÞ ðA28Þ

T 25 ¼ �
2jlnnb1l

r
Z 0nðb1rÞ þ 2jlnnl

r2
Znðb1rÞ ðA29Þ

Fig. 8. The time–frequency distribution of the wave in Fig. 7(c).
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T 26 ¼ �
2jlnnb1l

r
W 0

nðb1rÞ þ 2jlnnl
r2

W nðb1rÞ ðA30Þ

T 31 ¼ 2jlna1Z 0nða1rÞ ðA31Þ
T 32 ¼ 2jlna1W 0

nða1rÞ ðA32Þ

T 33 ¼ j
lnn

r
Znðb1rÞ ðA33Þ

T 34 ¼ j
lnn

r
W nðb1rÞ ðA34Þ

T 35 ¼ llb1

x2

c2
2

� 2n2

� �
Z 0nðb1rÞ ðA35Þ

T 36 ¼ llb1

x2

c2
2

� 2n2

� �
W 0

nðb1rÞ ðA36Þ

where

a2
1 ¼ k1a

2; b2
1 ¼ k2b

2 ðA37Þ

a2 ¼ x2

c2
1

� n2; b2 ¼ x2

c2
2

� n2 ðA38Þ

k1 ¼
1; a2 > 0

�1; a2 < 0

�
; k2 ¼

1; b2 > 0

�1; b2 < 0

(
ðA39Þ
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